The pulvinar regulates information transmission between cortical areas based on attention demands.
Publication Year
2012
Type
Journal Article
Abstract
Selective attention mechanisms route behaviorally relevant information through large-scale cortical networks. Although evidence suggests that populations of cortical neurons synchronize their activity to preferentially transmit information about attentional priorities, it is unclear how cortical synchrony across a network is accomplished. Based on its anatomical connectivity with the cortex, we hypothesized that the pulvinar, a thalamic nucleus, regulates cortical synchrony. We mapped pulvino-cortical networks within the visual system, using diffusion tensor imaging, and simultaneously recorded spikes and field potentials from these interconnected network sites in monkeys performing a visuospatial attention task. The pulvinar synchronized activity between interconnected cortical areas according to attentional allocation, suggesting a critical role for the thalamus not only in attentional selection but more generally in regulating information transmission across the visual cortex.
Keywords
Journal
Science
Volume
337
Pages
753-6
Date Published
08/2012
ISSN Number
1095-9203
Alternate Journal
Science
PMID
22879517